【図解・表説】ローン減税耐震基準−新耐震設計基準入門(3)−

新耐震設計基準への適合に必要となる技術


粘りの生じた建物でのコンピューターによる構造計算

新耐震設計基準においては、建物の粘り(靱性)による大地震への抵抗を構造計算により確認することとなっています。これは複雑かつ大量の計算を必要としますが、コンピューターの普及により一般的な建築物でも実現できるようになったものです。


変形状態による構造計算の特長

構造計算の手法は建物の変形状態によって異なったものとなります。変形状態には、弾性変形と塑性変形があります。


弾性変形・塑性変形

建物に粘り(靱性)が生じるのは、地震の大きな揺れにより塑性変形が生じた時です。塑性変形は、地震の揺れが収まった後も建物の形が元に戻らないような現象です。元の形に戻る場合を弾性変形と呼びます。



弾性・塑性の数学的違い

弾性変形の場合は、変形量と力が比例関係にあり(フックの法則)、グラフに表すと直線になります。また一次式として明解に表現できます。構造計算をした場合には代数的に解析できる場合が多いです。

塑性変形の場合は、変形量と力の関係が明確にならず、グラフに表すと曲線になります。また放物線のように明解な数式表現も難しいです。構造計算をする場合に数値的な解析が中心となります。



代数的・数値的手法の違い

一般に計算と言った場合にイメージされるのは代数的手法です。式を変形したり公式を用いて計算するお馴染みの手法です。弾性変形の構造計算の多くは代数的手法になります。

公式的に計算が出来ない場合は、数値的手法となります。これは数字を段階的に当てはめていって、試行錯誤的に計算を繰り返し、出来る限り正解に近い値を求めようとするものです。このため、数値的手法は多量の繰り返し計算を必要とします。


複雑な架構での構造計算の特長

建物は柱・梁・壁によって架構が組まれます。この架構が構造計算に大きな影響を与えます。


崩壊メカニズム

単純な架構(鉄筋コンクリート造の門型ラーメン)を例にすると、非常に大きな揺れを受けた時、柱や梁の一部が弾性限界を超えて塑性化します(塑性ヒンジ)。塑性ヒンジでは、部材が簡単に折れ曲がるようになります。この塑性ヒンジが1箇所だけならば倒壊しませんが、その数が増えて全体の形を保てなくなると、形が崩壊して建物が倒壊します。



崩壊メカニズムのバリエーション

同じ架構であっても、どこが塑性化するかによって全体が変形する条件が変わります。変形条件が変わると、構造計算も異なるものとなります。

柱や梁などの部材の数が増えて複雑な形状の架構になると、崩壊する時のバリエーション(崩壊メカニズム)が多くなります。崩壊メカニズムが多くなる架構では、計算量も増大します。


コンピューターの普及による構造計算の発展

膨大な繰り返し計算には、コンピューターが効果を発揮しますが、新耐震設計基準は、まさにコンピューターが普及し始めた時代に制定されました。


構造計算年表

新耐震設計基準が制定された1981年に、コンピューターのハードウェアでは16bitパソコンが、ソフトウェアではMS−DOSが世に出ました。

新耐震設計法の二次設計(大地震時)に用いる保有水平耐力計算のプログラムもこれらに続いてリリースされました。当初のプログラムは手計算も可能な節点振り分け法を用いたものでしたが、PCの発達に伴い極限解析法や増分解析法といった精算法によるプログラムも使われるようになりました。


構造解析手法

二次設計だけでなく、一次設計(中地震時)においても、たわみ角法やD値法からマトリックス法のプログラムの使用が普及しました。

マトリックス法や精算法による構造解析プログラムは、適用範囲が広いのが利点です。これにより設計条件の自由度が拡大して、様々なプランの建築物が可能となりました。


耐震設計手法

地震の揺れは、本来時間的に強さや向きが変化する動的なものです。しかし保有水平耐力計算では、地震力を時間的に変化しない静的なものに置き換えて解析しています。これもコンピューターの発達により、地震力の時間的変化を考慮した動的解析である時刻歴応答計算や限界耐力計算も可能になってきています。

動的解析は主に超高層建築物で採用され、一般的な建築物では保有水平耐力計算が主流となっています。



耐震基準適合証明書 についてはこちら           



    1. 【図解・表説】ローン減税耐震基準−新耐震設計基準入門(3)−